Les études confirment que la charge virale (nombre des virus dans l’organisme) est plus élevée au début de la maladie. Les taux d’ARN viral semblent être plus élevés peu après l’apparition des symptômes [1] ; la transmission peut être plus probable au stade précoce de l’infection.
La durée de l’excrétion virale est variable. Dans une étude portant sur 21 patients atteints d’une maladie légère (sans symptômes respiratoires), 90 % ont eu des tests négatifs sur des prélèvements naso-pharyngés 10 jours après l’apparition des symptômes ; ces Tests ont été positifs plus longtemps chez les patients atteints d’une maladie plus grave [2].
Dans une étude portant sur 137 patients, la durée médiane de l’excrétion de l’ARN viral à partir d’échantillons oropharyngés était de 20 jours (8 à 37 jours) [3].
Les taux de transmission chez un individu présentant une infection symptomatique varient. Selon un rapport conjoint OMS-Chine, le taux de contamination est de 1 à 5 % en Chine. Aux États-Unis, le taux d’attaque secondaire symptomatique était de 0,45 %. [4].
Chloroquine, hydroxychloroquine
La chloroquine et l’hydroxychloroquine inhibaient toutes deux le CoV-2 du SRAS in vitro, bien que l’hydroxychloroquine semble avoir une activité antivirale plus puissante [5].
L’utilisation de la chloroquine est incluse dans les directives de traitement de la Commission nationale chinoise de la santé et aurait été associée à une diminution de la progression de la maladie et de la durée des symptômes [6,7]. Cependant, les données détaillées primaires n’ont pas été publiées [8].
Dans une étude portant sur 36 patients atteints de COVID-19, l’utilisation de l’hydroxychloroquine (200 mg trois fois par jour pendant 10 jours) a été associée à un taux d’ARN indétectable du SRAS-CoV-2 sur des échantillons naso-pharyngés au jour 6 par rapport à l’absence d'un traitement (70 contre 12,5 %) [9]. Dans cette étude, l’utilisation de l’azithromycine en combinaison avec l’hydroxychloroquine a semblé présenter un avantage supplémentaire, mais il existe des questions sur la méthodologie concernant les groupes de contrôle de l’étude, la justification biologique de l’utilisation de l’azithromycine dans ce contexte n’est pas claire.
Malgré les données cliniques limitées, étant donné la sécurité relative de l’utilisation à court terme de l’hydroxychloroquine (avec ou sans azithromycine), et l’activité antivirale confirmée in vitro, certains cliniciens pensent qu’il est raisonnable d’utiliser l’un ou les deux agents chez les patients hospitalisés présentant une infection grave ou un risque d’infection grave.
La possibilité de toxicité du médicament (cardiaque : allongement de l’intervalle QTc témoin de trouble de rythmes cardiaques, toxicité rétinienne) drvrait être envisagée avant d’utiliser l’hydroxychloroquine.
Le dosage optimal est incertain ; divers schémas sont utilisés, notamment 400 mg deux fois par jour le premier jour puis quotidiennement pendant cinq jours, ou 400 mg deux fois par jour le premier jour puis 200 mg deux fois par jour pendant quatre jours, ou 600 mg deux fois par jour le premier jour, puis 400 mg par jour pendant quatre jours [10].
Le dépistage des patients pour les manifestations cliniques compatibles avec la COVID-19 (par exemple, fièvre, toux, dyspnée) avant l’entrée dans un établissement de santé peut aider à identifier ceux qui peuvent justifier des précautions supplémentaires.
Cela peut être fait par téléphone avant que le patient ne se présente dans un établissement. Il convient de conseiller à toute personne présentant ces manifestations de porter un masque facial. Des zones d’attente séparées pour les patients présentant des symptômes respiratoires doivent être désignées, si possible, à une distance d’au moins un mètre des zones d’attente habituelles.
Les patients symptomatiques doivent être interrogés sur leurs voyages récents ou sur leur exposition potentielle à COVID-19 au cours des 14 jours précédents afin de déterminer la nécessité d’autres évaluations pour COVID-19.
Dans les établissements de soins de longue durée, les centres américains recommandent de prendre des précautions comme éviter le contact et la protection contre les gouttelettes, en plus de la protection des yeux, pour tout patient souffrant d’une infection respiratoire non diagnostiquée [10]. Cela peut contribuer à réduire le risque de propagation des cas non suspects de COVID-19.
Pour aider à réduire la propagation du virus COVID-19, des procédures de contrôle des infections doivent également être mises en œuvre [11].
L’importance de la désinfection de l’environnement a été illustrée dans une étude menée à Singapour, dans laquelle de l’ARN viral a été détecté sur presque toutes les surfaces testées (poignées, interrupteurs, lit et escaliers, portes et fenêtres intérieures, cuvette de toilettes, lavabo) dans la chambre d’isolement d’un patient atteint d’une infection légère symptomatique COVID-19 [12].
Il est à noter que la détection d’ARN viral n’indique pas nécessairement la présence d’un virus infectieux.
On ignore combien de temps le CoV-2 du SRAS peut persister sur les surfaces [13] ; d’autres coronavirus ont été testés et peuvent survivre sur des surfaces jusqu’à six à neuf jours sans désinfection. Dans une étude évaluant la survie de virus séchés sur une surface plastique à température ambiante, un échantillon contenant le CoV-SAR (un virus étroitement apparenté au CoV-SAR-2) avait une infectiosité détectable à six jours, mais pas à neuf jours [13].
Une lettre de recherche du 17 mars publiée dans le New England Journal of Medicine a rapporté des expériences dans lesquelles SARS-CoV-2 a été artificiellement aérosolisé (Dispersion de virus dans un gaz) en utilisant des appareils à tambour rotatif.
Les chercheurs ont pu démontrer que le virus aérosolisé artificiellement est resté viable et infectieux pendant trois heures, et qu’il est « plausible » que, si quelque chose provoque l’aérosolisation du virus en dehors du laboratoire, cela pourrait être un autre mode de transmission pour COVID-19.
Les chercheurs n’ont pas prétendu que la toux ou les éternuements provoquaient une aérosolisation du virus ni que le virus pouvait rester en suspension dans l’air pendant trois heures. Certains rapports des médias semblent avoir donné l’impression que le SARS-CoV-2 "flotte dans l’air".
Cette étude a démontré que le SRAS-CoV-2 peut rester infectieux pendant des heures dans un aérosol (dans des conditions de laboratoire).
« Nous avons constaté que la stabilité du SARS-CoV-2 était similaire à celle du SARS-CoV-1 dans les circonstances expérimentales. Cela indique que les différences dans les caractéristiques épidémiologiques de ces virus proviennent d’autres facteurs, y compris des charges virales élevées dans les voies respiratoires supérieures et le potentiel pour les personnes infectées par le SRAS-CoV-2 de se débarrasser et de transmettre le virus tout en étant asymptomatique. »
Cette étude va dans le même sens des autres études, le COVID-19 ne se répand pas par voie aérienne.
À l’heure actuelle, il ne semble pas y avoir de preuve de transmission aéroportée.
La transmission de COVID-19 via des gouttelettes, ou indirectement par contact avec des surfaces contaminées doit rester au centre des efforts de lutte contre la contamination dans l'état actuel de connaissance.
RÉFÉRENCES
1— Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med 2020.
2— Liu Y, Yan LM, Wan L, et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis 2020.
3— Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020.
4— Kakimoto K, Kamiya H, Yamagishi T, et al. Initial Investigation of Transmission of COVID-19 Among Crew Members During Quarantine of a Cruise Ship - Yokohama, Japan, February 2020. MMWR Morb Mortal Wkly Rep 2020; 69:312.
5— Yao X, Ye F, Zhang M, et al. In Vitro Antiviral Activity and Projection of Optimized Dosing of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020.
6— Gao J, Tian Z, Yang X. Breakthrough : Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020 ; 14:72.
7— Colson P, Rolain JM, Lagier JC, et al. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020; : 105932.
8- Cortegiani A, Ingoglia G, Ippolito M, et al. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020.
9- Gautret et al. (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: resu lts of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agent s – In Press 17 March 2020
10- CDC. Therapeutic options for patients with COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/hcp/therapeutic-options.html (Accessed on March 22, 2020).
11- Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 2020; 104:246.
12- Ong SWX, Tan YK, Chia PY, et al. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS- CoV-2) From a Symptomatic Patient. JAMA 2020.
13- Rabenau HF, Cinatl J, Morgenstern B, et al. Stability and inactivation of SARS coronavirus. Med Microbiol Immunol 2005; 194:1.
By accepting you will be accessing a service provided by a third-party external to https://causam.fr/